Turing instability for a ratio-dependent predator–prey model with diffusion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turing instability for a ratio-dependent predator-prey model with diffusion

Ratio-dependent predator-prey models have been increasingly favored by field ecologists where predator-prey interactions have to be taken into account the process of predation search. In this paper we study the conditions of the existence and stability properties of the equilibrium solutions in a reaction-diffusion model in which predator mortality is neither a constant nor an unbounded functio...

متن کامل

Instability of turing patterns in reaction-diffusion-ODE systems

The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis o...

متن کامل

Characterization of Turing Diffusion-driven Instability on Evolving Domains

In this paper we establish a general theoretical framework for Turing diffusion-driven instability for reaction-diffusion systems on time-dependent evolving domains. The main result is that Turing diffusion-driven instability for reaction-diffusion systems on evolving domains is characterised by Lyapunov exponents of the evolution family associated with the linearised system (obtained by linear...

متن کامل

Model reduction permits Turing instability analysis of arbitrary reaction-diffusion models

Synthesising a genetic network which generates stable Turing patterns is one of the great challenges of synthetic biology, but a significant obstacle is the disconnect between the mathematical theory and the biological reality. Current mathematical understanding of patterning is typically restricted to systems of 2 or 3 chemical species, for which equations are tractable, but plausible genetic ...

متن کامل

Hopf bifurcation and Turing instability in the reaction–diffusion Holling–Tanner predator–prey model

The reaction–diffusion Holling–Tanner predator–prey model with Neumann boundary condition is considered. We perform a detailed stability and Hopf bifurcation analysis and derive conditions for determining the direction of bifurcation and the stability of the bifurcating periodic solution. For partial differential equation (PDE), we consider the Turing instability of the equilibrium solutions an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2011

ISSN: 0096-3003

DOI: 10.1016/j.amc.2011.02.018